Abstract

Nonmetals reclaimed from waste printed circuit boards (PCBs) are used to replace wood flour in the production of wood plastic composite (WPC). To evaluate property durability against weather exposure, the effects of accelerated aging process on the properties of WPC are investigated. The results show that filling of nonmetals in WPC improves the flexural strength and tensile strength, and reduces screw withdrawal strength. Before hollow WPC with 15% nonmetals (H-15-WPC) underwent aging process, H-15-WPC had a flexural strength of 25.8 MPa, a tensile strength of 9.8 MPa, a charpy impact strength of 3.4 kJ/m(2), and face/edge screw withdrawal strength of 121/115 N/mm. It is found that flexural strength of H-15-WPC decreases linearly with the increase of accelerated aging cycles, and the effects of aging test on tensile and impact strength of H-15-WPC are minor. For solid WPC, the accelerated aging test decreases screw withdrawal strength slightly. All the results indicate that nonmetals of waste PCBs can be reused as an alternative for wood flour in WPC products rather than resorting to their landfill or combustion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call