Abstract

Cadmium (Cd) geochemical behavior is strongly influenced by its adsorption onto natural phyllomanganates, which contain both layer edge sites and vacancies; however, Cd isotope fractionation mechanisms at these sites have not yet been addressed. In the present work, Cd isotope fractionation during adsorption onto hexagonal (containing both types of sites) and triclinic birnessite (almost only edge sites) was investigated using a combination of batch adsorption experiments, extended X-ray absorption fine structure (EXAFS) spectroscopy, surface complexation modeling, and density functional theory (DFT) calculations. Light Cd isotopes are preferentially enriched on solid surfaces, and the isotope fractionation induced by Cd2+ adsorption on edge sites (Δ114/110Cdedge-solution = -1.54 ± 0.11‰) is smaller than that on vacancies (Δ114/110Cdvacancy-solution = -0.71 ± 0.21‰), independent of surface coverage or pH. Both Cd K-edge EXAFS and DFT results indicate the formation of double corner-sharing complexes on layer edge sites and mainly triple cornering-sharing complexes on vacancies. The distortion of both complexes results in the negative isotope fractionation onto the solids, and the slightly longer first Cd-O distances and a smaller number of nearest Mn atoms around Cd at edge sites probably account for the larger fractionation magnitude compared to that of vacancies. These results provide deep insights into Cd isotope fractionation mechanisms during interactions with phyllomanganates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.