Abstract

Machine vision based inspection systems are in great focus nowadays for quality control applications. The proposed work presents a novel approach for classification of wood knot defects for an automated inspection. The proposed technique utilizes gray level co-occurrence matrix and laws texture energy measures as texture feature extractors and feed-forward back-propagation neural network as classifier. The proposed work involves the comparison of gray level co-occurrence matrix based features with laws texture energy measures based features. Firstly it takes contrast, correlation, energy and homogeneity as input parameters to a feed-forward back propagation neural network to predict wood defects and then it take energy calculated from laws texture energy measures based energy maps as input feature to a feed-forward back propagation neural network. Mean Square Error (MSE) for training data is found to be 0.0718 and 90.5% overall average classification accuracy is achieved when laws texture energy measures based features are used as input to the neural network as compared to gray level co-occurrence matrix based input features where MSE for training data is found to be 0.10728 and 84.3% overall average classification accuracy is achieved. The proposed technique shows promising results to classify wood defects using a feed forward back-propagation neural network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.