Abstract

Ultrasound (US) imaging is the initial phase in the preliminary diagnosis for the treatment of kidney diseases, particularly to estimate kidney size, shape and position, to give information about kidney function, and to help in diagnosis of abnormalities like cysts, stones, junctional parenchyma and tumors which is shown in Figs. 7–9. This study proposes Grey Level Co-occurrence Matrix (GLCM)-based Probabilistic Principal Component Analysis (PPCA) and Artificial Neural Network (ANN) method for the classification of kidney images. Grey Wolf Optimization (GWO) is used to update the current positions of abnormal kidney images in the discrete searching space, thus getting the optimal feature subset for better classification purposes based on Feed Forward Neural Network (FFNN). The scanned image is pre-processed and the required features are extracted by GLCM, among those, some features are selected by PPCA. Feed Forward Back propagation Neural Network (FFBN) is used to classify the normalities and abnormalities in the part of kidney images. The proposed methodology is implemented in MATLAB platform and the analyzed result produces 98% accuracy using GWO-FFBN technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.