Abstract

Climate sensitivity of populations at the margins of their distribution range is of key importance to understand species' responses to future warming conditions. Pinus cembra is of particular interest being a typical high-elevation taxon, spread with mostly scattered populations within its actual range, but still overlooked in traditional dendrochronological researches due to low tree-ring variability and climate sensitivity. With a different approach, we analyzed time series of xylem anatomical traits, split into intra-ring sectors, and used daily climate records over 89years (1926-2014) aiming to improve the quality and time resolution of the climate/growth associations. From nine trees growing at their altitudinal limit and on 1.5 × 106 tracheids, we measured ring width (MRW), cell number per ring, lumen area (LA), and cell-wall thickness (CWT). We then computed correlations with monthly and fortnightly climate data. Late-spring and summer temperature emerged as the most important factors. LA and especially CWT showed a stronger temperature response than MRW, starting in mid-May and early June, respectively. CWT also evidenced the longest period of correlations with temperature and a significant difference between latewood radial and tangential walls. Analysis of xylem anatomical traits at intra-ring level and the use of daily temperature records proved to be useful for high resolution and detailed climate/growth association inferences in Pinus cembra.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call