Abstract
Timely prediction of pathogen is important key factor to reduce the quality and yield losses. Wheat is major crop in northern part of India. In Punjab, wheat face challenge by different diseases so the study was conducted for two locations viz. Ludhiana and Bathinda. The information regarding the occurrence of Karnal bunt in 12 consecutive crop seasons (from 2009-10 to 2020-21) in Ludhiana district and in 9 crop seasons (from 2010-11 to 2018-19) in Bathinda district, was collected from the Wheat Section of the Department of Plant Breeding and Genetics at Punjab Agricultural University (PAU), located in Ludhiana. The study aims to investigate the adequacy of various methods of machine learning for prediction of Karnal bunt using meteorological data for different time period viz. February, March, 15 February to 15 March and overall period obtained from Department of Climate Change and Agricultural Meteorology, PAU, Ludhiana. The most intriguing outcome is that for each period, different disease prediction models performed well. The random forest regression (RF) for February month, support vector regression (SVR) for March month, SVR and BLASSO for 15 February to 15 March period and random forest for overall period surpassed the performance than other models. The Taylor diagram was created to assess the effectiveness of intricate models by comparing various metrics such as root mean square error (RMSE), root relative square error (RRSE), correlation coefficient (r), relative mean absolute error (MAE), modified D-index, and modified NSE. It allows for a comprehensive evaluation of these models' performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.