Abstract

This paper is devoted to the smooth and stationary Wong-Zakai approximations for a class of rough differential equations driven by a geometric fractional Brownian rough path ω with Hurst index H∈(13,12]. We first construct the approximation ωδ of ω by probabilistic arguments, and then use the rough path theory to obtain the Wong-Zakai approximation for the solution on any finite interval. Finally, both the original system and the approximative system generate a continuous random dynamical systems φ and φδ. As a consequence of the Wong-Zakai approximation of the solution, φδ converges to φ as δ→0.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.