Abstract

A nation’s prosperity depends to a significant degree on a highly educated workforce in science, technology, engineering, and math (STEM). In 2017 only 29 percent of the US STEM workforce was female, even though women represent 51.5 percent of the population (see National Center for Science and Engineering Statistics 2019, cited under Statistical Compendia). If more women were to enter STEM, this would not only relieve the shortage of STEM workers, but also provide lucrative jobs to women, and include their perspectives, fostering innovation and scientific progress. Shortages of women in STEM exist in other countries and are being addressed with varying levels of success (see Cross-Cultural Findings). However, the majority of research efforts examining the reasons behind women’s underrepresentation in STEM have been conducted in the United States, often funded by the US government (e.g., by the National Science Foundation’s Broadening Participation in Computing program and Research on Gender in Science and Engineering program). The Theories researchers employ focus on different kinds of explanations for female underrepresentation in STEM with varying ramifications and implications for interventions. For example, some researchers focus on biological explanations, attributing female underrepresentation in STEM to gender differences in Quantitative, Spatial, and Verbal Abilities. Other researchers focus on psychological factors such as Stereotype Threat, women’s low Self-Efficacy in male-dominated fields, a lack of Sense of Belonging or Identification with a STEM Field, and negative Stereotypes about People in STEM and the Field of STEM that conflict with women’s Gender Roles and Values. Furthermore, there exist cultural and institutional barriers that deter women or make it difficult for them to succeed in STEM fields. These include a lack of Role Models, the Role of Parents in encouraging females, Pedagogical Issues, General Workplace Issues such as a chilly climate, problems with Work-Life Balance that disproportionately affect women who typically are the primary caretakers of children and elderly parents, and outright Bias and Discrimination. Only in the early 21st century have researchers started to pay attention to Intersectionality. Gender intersects with race, ethnicity, sexual orientation, socioeconomic status, first-generation college student status, and many more. We now know that these intersectionalities affect outcomes in important ways. Furthermore, it is important to discuss Best Practices for Intervention Strategies. This article also examines Cross-Cultural Findings regarding the phenomenon of women’s underrepresentation in STEM. Striving for currency, this article will focus on work that has been published within the early 21st century. Rather than presenting research on individual STEM disciplines separately, this article discusses the major issues and causes across the disciplines. This provides for a less repetitive presentation and facilitates comparisons within one topic across disciplines (e.g., under the heading Self-Efficacy, the reader can compare research on computer science, technology, and engineering). It is also worth noting that certain STEM fields are overrepresented among research on specific causes. For example, most research on Stereotype Threat focuses on math. And certain STEM fields have received more research attention than others. Computer science, science as a general area, and engineering have been well studied. Math has been studied well in K–12 samples, but less well in higher education. Specific science fields like physics, astronomy, chemistry, or the geosciences have received much less attention.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.