Abstract

Conventional radiography based on attenuation of a well-collimated beam remains the mainstay of neutron imaging. The spatial resolution attained with this pinhole-camera method depends on the beam collimation; therefore, achieving the spatial resolution of a few microns is practically difficult, since collimating the neutron beam results in a low flux. The use of focusing devices allows maintaining sufficient spatial resolution without collimating the beam. Therefore, axisymmetric grazing-incidence focusing mirrors (Wolter mirrors) have begun to be introduced to neutron imaging. In this paper, a design of a neutron microscope for NIST Center for Neutron Research (NCNR) is presented. We evaluate the spatial resolution and study field curvature aberrations of Wolter mirrors through ray-tracing simulations. A general formula is found describing the field curvature, and ways to counter these aberrations are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call