Abstract
Neutron imaging enables direct visualization of evaporation and condensation of cryogenic propellants in metal containers such as aluminum and stainless steel. CFD models of propellant behaviors inside the large tanks have shown that a thin liquid film is formed along the interior surface, but this had not been verified experimentally. In the present study, neutron imaging is used to study evaporation and condensation rates of liquid methane inside a cylindrical 10 mm, Al 6061 cell. The liquid meniscus is clearly shown, but the spatial resolution is insufficient to directly image thin liquid films that may be on the interior surface. Optical density (neutron attenuation) analysis enables quantitative measurements of these liquid films. An optical density image is formed by removing the background noise and normalizing the liquid image with that of the empty cell. Optical densities are then transformed into a liquid transmission thickness using the Beer-Lambert law. This technique enables measurement of film thicknesses smaller than the spatial resolution of the imaging system. The above graphic shows an optical density image during condensation of methane and the corresponding horizontal scan which suggests that a 11 μm film exists on the wall. The images indicate that methane undergoes film-wise condensation and is perfectly wetting to aluminum. These experiments were conducted at the NIST Center for Neutron Research in the Neutron Imaging Facility and the relevant work is supported by an Early stage Innovations Grant from NASA's Space Technology Research Grants Program (Grant # NNX14AB05G).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.