Abstract

The evolution of close binary systems containing Wolf-Rayet (WR) stars and black holes (BHs) is analyzed numerically. Both the stellar wind from the donor star itself and the induced stellar wind due to irradiation of the donor with hard radiation arising during accretion onto the relativistic component are considered. The mass and angular momentum losses due to the stellar wind are also taken into account at phases when the WR star fills its Roche lobe. It is shown that, if a WR star with a mass higher than ∼10M ⊙ fills its Roche lobe in an initial evolutionary phase, the donor star will eventually lose contact with the Roche lobe as the binary loses mass and angular momentum via the stellar wind, suggesting that the semi-detached binary will become detached. The star will remain a bright X-ray source, since the stellar wind that is captured by the black hole ensures a near-Eddington accretion rate. If the initial mass of the helium donor is below ∼5M ⊙, the donor may only temporarily detach from its Roche lobe. Induced stellar wind plays a significant role in the evolution of binaries containing helium donors with initial masses of ∼2M ⊙. We compute the evolution of three observed WR-BH binaries: Cyg X-3, IC 10 X-1, and NGC 300 X-1, as well as the evolution of the SS 433 binary system, which is a progenitor of such systems, under the assumption that this binary will avoid a common-envelope stage in its further evolution, as it does in its current evolutionary phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call