Abstract

Successful field trials have been reported as part of the effort to develop the maternally transmitted endosymbiontic bacteria Wolbachia as an intervention agent for controlling mosquito vectors and their transmitted diseases. In order to further improve this novel intervention, artificially transinfected mosquitoes must be optimized to display maximum pathogen blocking, the desired cytoplasmic incompatibility (CI) pattern, and the lowest possible fitness cost. Achieving such optimization, however, requires a better understanding of the interactions between the host and various Wolbabachia strains and their combinations. Here, we transferred the Wolbachia wMel strain by embryonic microinjection into Aedes albopictus, resulting in the successful establishment of a transinfected line, HM (wAlbAwAlbBwMel), with a triple-strain infection comprising wMel, wAlbA, and wAlbB. Surprisingly, no CI was induced when the triply infected males were crossed with the wild-type GUA females or with another triply infected HC females carrying wPip, wAlbA, and wAlbB, but specific removal of wAlbA from the HM (wAlbAwAlbBwMel) line resulted in the expression of CI after crosses with lines infected by either one, two, or three strains of Wolbachia. The transinfected line showed perfect maternal transmission of the triple infection, with fluctuating egg hatch rates that improved to normal levels after repeated outcrosses with GUA line. Strain-specific qPCR assays showed that wMel and wAlbB were present at the highest densities in the ovaries and midguts, respectively, of the HM (wAlbAwAlbBwMel) mosquitoes. These finding suggest that introducing a novel strain of Wolbachia into a Wolbachia-infected host may result in complicated interactions between Wolbachia and the host and between the various Wolbachia strains, with competition likely to occur between strains in the same supergroup.

Highlights

  • A rapid increase in the number of arbovirus diseases transmitted by mosquitoes, such as dengue and Zika, in recent decades has underscored the urgency in developing effective intervention strategies (Velayudhan, 2012; Katzelnick et al, 2017)

  • The ability of a single wMel infection to inhibit arbovirus transmission in both Ae. aegypti and Ae. albopictus (Walker et al, 2011; Blagrove et al, 2012) motivated us to test whether a triple infection with wMel, wAlbA, and wAlbB could be established in Ae. albopictus to produce enhanced viral blocking effects for disease control, and whether there was competition among the various Wolbachia strains that might affect the nature of the symbiosis between Wolbachia and its mosquito host

  • We have demonstrated the successful establishment of a novel triple Wolbachia infection with wMel, wAlbA, and wAlbB in the Ae. albopictus HM line, with 100% maternal transmission efficiency

Read more

Summary

Introduction

A rapid increase in the number of arbovirus diseases transmitted by mosquitoes, such as dengue and Zika, in recent decades has underscored the urgency in developing effective intervention strategies (Velayudhan, 2012; Katzelnick et al, 2017). Rather than using chemical insecticides to directly kill the vector, an approach that is being challenged by the rapid development of insecticide resistance and the negative impacts on both the environment and non-target insect species, these new tools have focused on modifying the mosquito population in a speciesspecific manner, with the goal of either reducing the mosquito’s ability to host a pathogen or suppressing (or even eliminating) the mosquito population to break the viral transmission between vector and host (Achee et al, 2015) Among these strategies, Wolbachia-based interventions have recently shown encouraging results in field trials, successfully demonstrating either reduced dengue transmission through Wobachia-induced viral inhibition in the mosquitoes or the elimination of the Aedes vector populations through Wobachia-induced incompatible mating (Hoffmann et al, 2011; Mains et al, 2016; Nazni et al, 2019; Zheng et al, 2019; Crawford et al, 2020). It appears that the GUA genetic background is able to overcome the triple infection-associated decrease in egg hatch rate in the HM (wAlbAwAlbBwMel) line

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call