Abstract

BackgroundCytoplasmic incompatibility (CI) is induced in nature by Wolbachia bacteria, resulting in conditional male sterility. Previous research demonstrated that the two Wolbachia strains (wAlbA and wAlbB) that naturally co-infect the disease vector mosquito Aedes albopictus (Asian tiger mosquito) can be replaced with the wPip Wolbachia strain from Culex pipiens. Since Wolbachia-based vector control strategies depend upon the strength and consistency of CI, a greater understanding is needed on the CI relationships between wPip, wAlbA and wAlbB Wolbachia in Ae. albopictus.MethodsThis work consisted of a collaborative series of crosses carried out in Italy and in US to study the CI relationships between the “wPip” infected Ae. albopictus strain (ARwP) and the superinfected SR strain. The Ae. albopictus strains used in Italian tests are the wPip infected ARwP strain (ARwPIT), the superinfected SR strain and the aposymbiotic AR strain. To understand the observed pattern of CI, crossing experiments carried out in USA focused on the study of the CI relationships between ARwP (ARwPUS) and artificially-generated single infected lines, in specific HTA and HTB, harbouring only wAlbA and wAlbB Wolbachia respectively.ResultsThe paper reports an unusual pattern of CI observed in crossing experiments between ARwP and SR lines. Specifically, ARwP males are able to induce full sterility in wild type females throughout most of their lifetime, while crosses between SR males and ARwP females become partially fertile with male aging. We demonstrated that the observed decrease in CI penetrance with SR male age, is related to the previously described decrease in Wolbachia density, in particular of the wAlbA strain, occurring in aged superinfected males.ConclusionsThe results here reported support the use of the ARwP Ae. albopictus line as source of “ready-made sterile males”, as an alternative to gamma radiation sterilized males, for autocidal suppression strategies against the Asian tiger mosquito. In addition, the age dependent CI weakening observed in the crosses between SR males and ARwP females simplifies the downstream efforts to preserve the genetic variability within the laboratory ARwP colonies, to date based on the antibiotic treatment of wild captured superinfected mosquitoes, also reducing the costs.

Highlights

  • Cytoplasmic incompatibility (CI) is induced in nature by Wolbachia bacteria, resulting in conditional male sterility

  • In the 19 ± 1 d male age class, egg hatch had significantly fallen to 46.4 ± 10.3 0% in the ARwPIT (ANOVA: F = 16.65; d.f. = 12; P < 0.001), to 47.7 ± 7.5% in AR (ANOVA: F = 10.69; d.f. = 12; P = 0.001) and to 63.2 ± 10.2% in SR mosquito line (ANOVA: F = 23.01; d.f. = 12; P < 0.001)

  • This general trend agrees with a gradual decrease of the insemination capacity as males get older already reported in previous works [33,34,35,36,37,38,39,40,41,42]

Read more

Summary

Introduction

Cytoplasmic incompatibility (CI) is induced in nature by Wolbachia bacteria, resulting in conditional male sterility. The recent occurrence of autochthonous epidemics of Chikungunya and Dengue viruses in southern Europe [6,7] transmitted by Ae. albopictus, seems to confirm that the currently applied mosquito control methods (larval control, source reduction, and community participation) are not sufficient to keep the mosquito adult density below the epidemic risk threshold [8]. This was the main reason that stimulated the start of research for the development of a Sterile Insect Technique (SIT) program in Italy [9]. Developing alternative technologies to produce “ready-made sterile males”, avoiding sterilization with gamma rays, could improve the overall competitiveness of the released insects with a consequent improvement in program efficiency and a significant decrease in costs

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call