Abstract

AbstractSelective oxidation reactions are crucial in producing various chemicals in the industry. However, most catalytic processes for these reactions use harsh reaction conditions. Recently, heterogeneous photo(electro)catalysis has been considered promising for selective oxidation reactions under mild conditions. Semiconductor materials are frequently used as heterogeneous photocatalysts because they can produce active species that contribute to the oxidation of organic compounds under light irradiation. Among various semiconductor photocatalysts, tungsten oxide (WO3) is one of the most promising candidates due to its advantages, including high stability, wide light adsorption range, proper band structures, and unique catalytic mechanism. This paper reviews the WO3‐based materials for photocatalytic (PC) and photoelectrocatalytic (PEC) selective oxidations. We summarize the strategies for designing WO3 structures, which include morphology control, crystal facet optimization, and defect engineering. Then, the finely designed WO3 structures for PC and PEC oxidation of several typical organic compounds have been discussed based on catalytic mechanism and performance. Finally, we propose the prospects and challenges of WO3 photocatalysts and photoanodes in selective oxidation reactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call