Abstract

Wnt signaling plays important roles in cell polarization in diverse organisms, and loss of cell polarity is an early event in tumorigenesis caused by mutations in Wnt pathway genes. Despite this, the precise roles of Wnt proteins in cell polarization have remained elusive. In no organism has it been shown that the asymmetric position of a Wnt signal is essential to establishing a cell's polarity. Attempts to test this by ubiquitous expression of Wnt genes have suggested that Wnt signals might act only as permissive factors in cell polarization. Here we find, by using cell manipulations and ectopic gene expression in C. elegans, that the position from which Wnt signals are presented can determine the polarity of both embryonic and postembryonic cells. Furthermore, the position from which a Wnt signal is presented can determine the polarity of Frizzled receptor localization, suggesting that the polarizing effect of Wnt is likely to be direct. These results demonstrate that Wnt proteins can function as positional cues in establishing cell polarity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.