Abstract
Nervous system function is mediated by a precisely patterned network of synaptic connections. While several cell-adhesion and secreted molecules promote the assembly of synapses, the contribution of signals that negatively regulate synaptogenesis is not well understood. We examined synapse formation in the Caenorhabditis elegans motor neuron DA9, whose presynapses are restricted to a specific segment of its axon. We report that the Wnt lin-44 localizes the Wnt receptor lin-17/Frizzled (Fz) to a subdomain of the DA9 axon that is devoid of presynaptic specializations. When this signaling pathway, composed of the Wnts lin-44 and egl-20, lin-17/Frizzled and dsh-1/Dishevelled, is compromised, synapses develop ectopically in this subdomain. Conversely, overexpression of LIN-44 in cells adjacent to DA9 is sufficient to expand LIN-17 localization within the DA9 axon, thereby inhibiting presynaptic assembly. These results suggest that morphogenetic signals can spatially regulate the patterning of synaptic connections by subdividing an axon into discrete domains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.