Abstract

Under acute or chronic stresses, the adult heart undergoes a remodeling process that involves cardiomyocyte hypertrophy accompanied by apoptosis, necrosis, and fibrosis that lead to impaired cardiac contractility. The role of endogenous regeneration in this process is currently under investigation. Sustained deleterious stimuli will lead to a decompensated form of hypertrophy often culminating in heart failure.1 This form of hypertrophy is often referred to as “maladaptive.” When dealing with hypertrophy, it appears important to distinguish between the term being used on the cellular and molecular level (enlargement of individual cardiomyocytes and re-expression of fetal/embryonic genes) and the organ level (increased heart weight, left ventricular wall thickness, and functional diastolic and systolic impairment). In our view, these processes are certainly linked but not identical. Hypertrophy on the organ levels summarizes several independent cellular and molecular processes (see below), where cardiomyocyte growth is not necessarily the most important. Independent of its origin, cardiac hypertrophy is associated with alterations in cardiac geometry, mass, architecture, and function controlled by a complex network of interconnected and abundant signal-transduction pathways.2 New signaling molecules are emerging as possible targets to specifically attenuate maladaptive hypertrophy. Pathological, stress-induced growth of cardiomyocytes was shown to depend on Wnt/β-catenin nuclear signaling rather than its adhesive function in cell adhesion. However, the specificity of the cell type and the molecular mechanisms governing the Wnt signaling–dependent changes are currently unknown.3 In this issue of the Hypertension , the study by Malekar et al4 provides new evidences concerning the …

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call