Abstract
Wnt-4 is a mitogen expressed during postnatal repair and scar formation; however, its expression profile during scarless repair is unknown. Transforming growth factor (TGF)-beta1 has high expression during healing with scar formation. Whether TGF-beta1 directly influences Wnt-4 expression in fetal or postnatal fibroblasts has not been examined. Primary fetal and postnatal mouse fibroblasts were stimulated with TGF-beta1 and Wnt-4 expression quantitated by real-time polymerase chain reaction. Fetal E17 and postnatal mouse excisional wounds were also analyzed for Wnt-4 expression by real-time polymerase chain reaction. In E17 fibroblasts after TGF-beta1 stimulation, Wnt-4 expression increased 4-fold at 1 hour (p < 0.05) and peaked with an 11-fold increase at 2 hours (p < 0.05). By 24 hours, expression decreased to 2-fold baseline levels (p < 0.05). In postnatal fibroblasts, Wnt-4 expression also increased after TGF-beta stimulation, but peak expression was larger and relatively delayed, with a 17-fold increase at 12 hours (p < 0.005). Expression levels at 24 hours were still 4-fold greater than baseline (p < 0.05). In E17 fetal skin, Wnt-4 expression was 3.5-fold greater compared with 3-week-old mice (p < 0.005). Small increases in Wnt-4 expression (less than 2-fold) occurred during both fetal scarless and postnatal scarring mouse wound repair. The authors' data suggest that TGF-beta directly increases Wnt-4 expression in fetal and postnatal fibroblasts and that Wnt-4 is increased in both fetal and postnatal repair.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.