Abstract
Backgroundβ-catenin is an essential mediator of canonical Wnt signaling and a central component of the cadherin-catenin epithelial adhesion complex. Dysregulation of β-catenin expression has been described in pancreatic neoplasia. Newly published studies have suggested that β-catenin is critical for normal pancreatic development although these reports reached somewhat different conclusions. In addition, the molecular mechanisms by which loss of β-catenin affects pancreas development are not well understood. The goals of this study then were; 1] to further investigate the role of β-catenin in pancreatic development using a conditional knockout approach and 2] to identify possible mechanisms by which loss of β-catenin disrupts pancreatic development. A Pdx1-cre mouse line was used to delete a floxed β-catenin allele specifically in the developing pancreas, and embryonic pancreata were studied by immunohistochemistry and microarray analysis.ResultsPdx1-cre floxed β-catenin animals were viable but demonstrated small body size and shortened median survival. The pancreata from knockout mice were hypoplastic and histologically demonstrated a striking paucity of exocrine pancreas, acinar to duct metaplasia, but generally intact pancreatic islets containing all lineages of endocrine cells. In animals with extensive acinar hypoplasia, putative hepatocyte transdifferention was occasionally observed. Obvious and uniform pancreatic hypoplasia was observed by embryonic day E16.5. Transcriptional profiling of Pdx1-cre floxed β-catenin embryonic pancreata at E14.5, before there was a morphological phenotype, revealed significant decreases in the β-catenin target gene N-myc, and the basic HLH transcription factor PTF1, and an increase of several pancreatic zymogens compared to control animals. By E16.5, there was a dramatic loss of exocrine markers and an increase in Hoxb4, which is normally expressed anterior to the pancreas.ConclusionWe conclude that β-catenin expression is required for development of the exocrine pancreas, but is not required for development of the endocrine compartment. In contrast, β-catenin/Wnt signaling appears to be critical for proliferation of PTF1+ nascent acinar cells and may also function, in part, to maintain an undifferentiated state in exocrine/acinar cell precursors. Finally, β-catenin may be required to maintain positional identity of the pancreatic endoderm along the anterior-posterior axis. This data is consistent with the findings of frequent β-catenin mutations in carcinomas of acinar cell lineage seen in humans.
Highlights
Over the past several years, key transcription factors and signaling pathways that mediate pancreatic development have become increasingly well-defined [1]
Prior studies have suggested the importance of Wnt signaling in pancreatic development, as expression of Wnt1 under control of the Pdx-1 promoter was associated with murine pancreatic agenesis [6]
One study suggested that β-catenin/Wnt signaling was essential for development of exocrine pancreas, but played no role in endocrine development, while the other concluded that the loss of β-catenin/Wnt signaling in the developing mouse resulted in transient pancreatitis, but found that exocrine pancreas eventually recovered [8,9]
Summary
Over the past several years, key transcription factors and signaling pathways that mediate pancreatic development have become increasingly well-defined [1]. Published studies from two laboratories examined the effects of deleting β-catenin, the central mediator of canonical Wnt signaling, in the mouse pancreas and reported somewhat conflicting findings. This study found a decrease in islet cell numbers in β-catenin knockout mice suggesting a significant role for the Wnt pathway in endocrine lineage development. It is still not clear why these reports reached different conclusions, nor have the molecular pathways that act downstream of β-catenin in the pancreas been identified
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.