Abstract

We are interested in geometric optics expansions for linear hyperbolic systems of equations defined in the strip [Formula: see text]. More precisely the aim of this paper is to describe the influence of the boundary conditions on the behavior of the solution. This question has already been addressed in [A. Benoit, Wkb expansions for hyperbolic boundary value problems in a strip: Selfinteraction meets strong well-posedness, J. Inst. Math. Jussieu 19(5) (2020) 1629–1675] for stable boundary conditions. Here we do not require that the boundary conditions lead to strongly well-posed problems but only to weakly well-posed problems (that is loss(es) of derivatives are possible). The question is thus to determine what can be the minimal loss of derivatives in the energy estimate of the solution. The main result of this paper is to show, thanks to geometric optics expansions, that if the strip problem admits a boundary in the so-called [Formula: see text]-class of [S. Benzoni-Gavage, F. Rousset, D. Serre and K. Zumbrun, Generic types and transitions in hyperbolic initial-boundary-value problems, Proc. Roy. Soc. Edinburgh Sect. A 132(5) (2002) 1073–1104] then the loss of derivatives shall be at least increasing with the time of resolution. More precisely this loss is bounded by below by a step function increasing with respect to time which depends on the minimal time needed to perform a full regeneration of the wave packet.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call