Abstract

Recent investigations have suggested that the use of non-classical states of light, such as entangled photon pairs, may open new and exciting avenues in experimental two-photon absorption spectroscopy. Despite several experimental studies of entangled two-photon absorption (eTPA), there is still a heated debate on whether eTPA has truly been observed. This interesting debate has arisen mainly because it has recently been argued that single-photon-loss mechanisms, such as scattering or hot-band absorption, may mimic the expected entangled-photon linear absorption behavior. In this work, we focus on transmission measurements of eTPA and explore three different two-photon quantum interferometers in the context of assessing eTPA. We demonstrate that the so-called N00N-state configuration is the only one among those considered insensitive to linear (single-photon) losses. Remarkably, our results show that N00N states may become a potentially powerful tool for quantum spectroscopy, placing them as a strong candidate for the certification of eTPA in an arbitrary sample.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.