Abstract

AbstractThe within-tree scale dynamics of mass attack by the Douglas-fir beetle, Dendroctonus pseudotsugae Hopkins, on its host were investigated and quantified. Seven similarly sized Douglas-fir, Pseudotsuga menziesii (Mirb.) Franco (Pinaceae), infested as part of several pheromone-induced infestations, were monitored over an entire attack season. Ninety percent of the attacks on mass-attacked trees occurred within 3 weeks of colonization; the remaining 10% occurred gradually over the remaining 7 weeks of the attack season. Vertical attack distribution followed a Gaussian form that shifted upwards on the bole with increasing attack density. The change in attack pattern associated with increasing attack density was investigated for the central vertical portion of the bole, where most attacks occurred, and where the vertical pattern was least variable. At low density, attacks were randomly distributed. As density increased, the distance between attacks decreased, eventually resulting in a uniform distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.