Abstract

Outbreaks of western spruce budworm (Choristoneura occidentalis Freeman), a native defoliator of Douglas-fir, appear to have been occurring further north in British Columbia (BC) compared to the early 1900s potentially as a result of climate change, but there is a lack of quantitative evidence to support this. I analysed the distribution of western spruce budworm infestation centers in forest health survey data for BC from 1967 to 2011 using a geographic information system (GIS) and linear regression. There was a significant (p<0.05) range shift towards higher latitudes and elevations. I also tested the prediction that this range shift was a result of a climate change-induced northward shift in optimal synchrony between springtime budworm larval emergence and Douglas-fir budburst, since the budworm must feed on newly flushed, highly nutritious needles for the best chance of survival. I simulated the dates of first larval emergence and budburst annually from 1901 to 2011 using phenology models and long-term climate data, then analysed them with GIS and linear regression. The mean difference in dates at higher latitudes and elevations has indeed significantly (p<0.05) converged towards optimal synchrony over the last century, while lower latitudes show divergence from optimal synchrony. Douglas-fir beetle (Dendroctonus pseudotsugae Hopkins), a native bark beetle that infests Douglas-fir in BC, has been associated with stands recently defoliated by western spruce budworm, leading to increased mortality of large-diameter trees. I predicted that moderate defoliation intensity, which reduces tree defenses while leaving thick phloem for optimal Douglas-fir beetle breeding material, will be most closely associated with subsequent Douglas-fir beetle infestation. Evaluation of generalized additive models with long-term insect and biophysical variables showed that moderate cumulative severity of a defoliation event greatly improved model fit for predicting the presence of subsequent Douglas-fir beetle infestation. I concluded that interactions between biotic disturbance agents is an important consideration in future research and forest management because of additive or synergistic effects and how changes in the outbreak dynamics of one species under climate change will affect the other.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.