Abstract
This paper explores how inductive machine learning can guide the breeding process of evolutionary algorithms for black-box function optimization. In particular, decision trees are used to identify the underlying characteristics of good and bad individuals, using the mined knowledge for wise breeding purposes. Inductive learning is complemented with statistical learning in order to define the breeding process. The proposed evolutionary process optimizes the fitness function in a dual manner, both maximizing and minimizing it. The paper also summarize some tuning and population sizing issues, as well as some preliminary results obtained using the proposed algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.