Abstract

Strategic games are missing special qualities of genre these days. Game engines neither reason about behaviors of computer objects nor have learning ability that can prepare countermeasure in variously command user`s strategy. This paper suggests a strategic game engine that applies non-monotonic reasoning and inductive machine learning. The engine emphasizes three components -“user behavior monitor”to abstract user`s objects behavior,“learning engine”to learn user`s strategy,“behavior display handler”to reflect abstracted behavior of computer objects on game. Especially, this paper proposes two layered-structure to apply non-monotonic reasoning and inductive learning to make behaviors of computer objects that learns strategy behaviors of user objects exactly, and corresponds in user`s objects. The engine decides actions and strategies of computer objects with created information through inductive learning. Main contribution of this paper is that computer objects command excellent strategies and reveal differentiation with behavior of existing computer objects to apply non-monotonic reasoning and inductive machine learning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.