Abstract
The Wirtinger number of a virtual link is the minimum number of generators of the link group over all meridional presentations in which every relation is an iterated Wirtinger relation arising in a diagram. We prove that the Wirtinger number of a virtual link equals its virtual bridge number. Since the Wirtinger number is algorithmically computable, it gives a more effective way to calculate an upper bound for the virtual bridge number from a virtual link diagram. As an application, we compute upper bounds for the virtual bridge numbers and the quandle counting invariants of virtual knots with 6 or fewer crossings. In particular, we found new examples of nontrivial virtual bridge number one knots, and by applying Satoh’s Tube map to these knots we can obtain nontrivial weakly superslice links.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.