Abstract

Vehicle detectors provide essential information about parking occupancy and traffic flow. To cover large areas that lack a suitable electrical infrastructure, wired sensors networks are impractical because of their high deployment and maintenance costs. Wireless sensor networks (WSNs) with autonomous sensor nodes can be more economical. Vehicle detectors intended for a WSN should be small, sturdy, low power, cost-effective, and easy to install and maintain. Currently available vehicle detectors based on inductive loops, ultrasound, infrared, or magnetic sensors do not fulfill the requirements above, which has led to the search for alternative solutions. This paper presents a vehicle detector which includes a magnetic and an optical sensor and is intended as sensor node for use with a WSN. Magnetic sensors based on magnetoresistors are very sensitive and can detect the magnetic anomaly in the Earth's magnetic field that results from the presence of a car, but their continuous operation would drain more than 1.5 mA at 3 V, hence limiting the autonomy of a battery-supplied sensor node. Passive, low-power optical sensors can detect the shadow cast by car that covers them, but are prone to false detections. The use of optical triggering to wake-up a magnetic sensor, combined with power-efficient event-based software, yields a simple, compact, reliable, low-power sensor node for vehicle detection whose quiescent current drain is 5.5 μA. This approach of using a low-power sensor to trigger a second more specific sensor can be applied to other autonomous sensor nodes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call