Abstract

Cellular-connected unmanned aerial vehicle (UAV) with flexible deployment is foreseen to be a major part of the sixth generation (6G) networks. The UAVs connected to the base station (BS), as aerial users (UEs), could exploit machine learning (ML) algorithms to provide a wide range of advanced applications, like object detection and video tracking. Conventionally, the ML model training is performed at the BS, known as centralized learning (CL), which causes high communication overhead due to the transmission of large datasets, and potential concerns about UE privacy. To address this, distributed learning algorithms, including federated learning (FL) and split learning (SL), were proposed to train the ML models in a distributed manner via only sharing model parameters. FL requires higher computational resource on the UE side than SL, while SL has larger communication overhead when the local dataset is large. To effectively train an ML model considering the diversity of UEs with different computational capabilities and channel conditions, we first propose a novel distributed learning architecture, a hybrid split and federated learning (HSFL) algorithm by reaping the parallel model training mechanism of FL and the model splitting structure of SL. We then provide its convergence analysis under non-independent and identically distributed (non-IID) data with random UE selection scheme. By conducting experiments on training two ML models, Net and AlexNet, in wireless UAV networks, our results demonstrate that the HSFL algorithm achieves higher learning accuracy than FL and less communication overhead than SL under IID and non-IID data, and the learning accuracy of HSFL algorithm increases with the increasing number of the split training UEs. We further propose a Multi-Arm Bandit (MAB) based best channel (BC) and best 2-norm (BN2) (MAB-BC-BN2) UE selection scheme to select the UEs with better wireless channel quality and larger local model updates for model training in each round. Numerical results demonstrate it achieves higher learning accuracy than BC, MAB-BC and MAB-BN2 UE selection scheme under non-IID, Dirichlet-nonIID and Dirichlet-Imbalanced data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.