Abstract

Fast wire scanners are today considered as part of standard instrumentation in high energy synchrotrons. The extension of their use to synchrotrons working at lower energies, where Coulomb scattering can be important and the transverse beam size is large, introduces new complications considering beam heating of the wire, composition of the secondary particle shower and geometrical consideration in the detection set-up. A major problem in treating these effects is that the creation of secondaries in a thin carbon wire by a energetic primary beam is difficult to describe in an analytical way. We here present new results from a full Monte Carlo simulation of this process yielding information on heat deposited in the wire, particle type and energy spectrum of secondaries and angular dependence as a function of primary beam energy. The results are used to derive limits for the use of wire scanners in low energy accelerators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.