Abstract

ABSTRACTMachining of metal matrix composites (MMCs) reinforced with low-density waste byproduct particulates using nonconventional processes is relatively new in the field of material science. However, more attention has been paid for investigations on nontraditional machining of such MMCs currently as the conventional machining may generate additional complexity. This study investigates the wire electro-discharge machining behavior of compo-casted cenosphere-reinforced AA6061 alloys. Cu60Zn40-coated copper wire was used as electrode material. The investigation demonstrates that melting and vaporization are the dominant machining mechanisms. The weight fraction of cenosphere was observed to be the most substantial process variables affecting the cutting rate, on-time, and the wire speed of tool were the next in the order of importance. The presence of nonconductive cenosphere particles along with thermal degradation of the aluminum matrix composites leads to degrading processed machined surface quality. The issues related to wire breakage and poor quality of the machined surface, surface finish, and dimensional accuracy are described in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call