Abstract

AbstractExtreme and persistent haze events frequently occur during wintertime China. While recent emissions reductions reduced annual mean fine particulate matter (PM2.5) concentrations over eastern China, their effectiveness on wintertime PM2.5 trend remains uncertain. We use observations and model simulations to quantify seasonal differences in PM2.5 trends and investigate the underlying chemical mechanisms driving such differences. We find a much slower decrease in observed wintertime PM2.5 (−3.2% yr−1) since 2014, in contrast to a drastic summertime decrease (−10.3% yr−1). Simulations show two previously underappreciated mechanisms buffering wintertime PM2.5 decrease, including an increase in oxidation capacity due to nitrogen oxides (NOx) reductions under wintertime volatile organic compound (VOC)‐limited chemistry, and an enhanced conversion of nitric acid to nitrate by ammonia due to sulfur dioxide reductions. Our findings suggest that control policies targeting VOC and deep NOx reductions are needed to improve wintertime PM2.5 air quality over China.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.