Abstract
Flying insects exhibit outperforming stability and control via continuous wing flapping even under severe disturbances in various conditions of wind gust and turbulence. While conventional linear proportional derivative (PD)-based controllers are widely employed in insect-inspired flight systems, they usually fail to deal with large perturbation conditions in terms of the 6-DoF nonlinear control strategy. Here we propose a novel wing kinematics-based controller, which is optimized based on deep reinforcement learning (DRL) to stabilize bumblebee hovering under large perturbations. A high-fidelity Open AI Gym environment is established through coupling a CFD data-driven aerodynamic model and a 6-DoF flight dynamic model. The control policy with an action space of 4 is optimized using the off-policy Soft Actor-Critic (SAC) algorithm with automating entropy adjustment, which is verified to be of feasibility and robustness to achieve fast stabilization of the bumblebee hovering flight under full 6-DoF large disturbances. The 6-DoF wing kinematics-based DRL control strategy may provide an efficient autonomous controller design for bioinspired flapping-wing micro air vehicles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.