Abstract
Red wine polyphenols (RWPs) have been reported to prevent hypertension and endothelial dysfunction. Several individual RWPs exert estrogenic effects. We analyzed the possible in vivo protective effects on blood pressure and endothelial function of RWPs in female spontaneously hypertensive rats (SHR) and its relationship with ovarian function. RWPs (40 mg/kg by gavage) were orally administered for 5 weeks. Ovariectomized rats showed both increased isoprostaglandin F(2alpha) excretion and aortic superoxide production and reduced relaxant response to acetylcholine and contraction to the endothelial nitric oxide synthase (eNOS) inhibitor l-NAME measured in the aorta but similar blood pressure, as compared with sham-operated rats. Moreover, in ovariectomized rats aortic eNOS expression was unchanged, whereas caveolin-1, angiotensin II receptor (AT)-1, and the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits p22(phox) and p47(phox) expression was increased compared with sham-operated rats. In both ovariectomized and sham-operated SHR, RWPs reduced systolic blood pressure, urinary isoprostaglandin F(2alpha) excretion, and aortic O(2)(-) production, improving the endothelium-dependent relaxant response to acetylcholine in SHR. These changes were associated with unchanged aortic eNOS expression, whereas caveolin-1 was increased and the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits p22(phox) and p47(phox) expression was reduced. RWPs had no effect on the AT-1 overexpression found in ovariectomized animals. All these results suggest that a chronic treatment with RWPs reduces hypertension and vascular dysfunction through reduction in vascular oxidative stress in female SHR in a manner independent of the ovarian function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.