Abstract

The health risks associated with particulate matter pollution (PM2.5) highlight the importance of comprehending key drivers of its spatial and temporal variability. While explanatory modeling is widely used for statistical inference in such applications, the role of wind variables (speed, direction) and their interplay with built environment are often overlooked. This study addresses this gap through a mobile air quality campaign in a suburban area over 10 days for each of three distinct seasons. We developed four innovative wind-based buffers to account for the wind factors and assess the impact of LiDAR-derived 3D built environment structure on PM2.5 variability at local and regional scales. Our second objective is to assess the predictive capabilities of wind-based variables. Results indicate that in our low-elevation, low-rise building study area, the built environment does not emerge as a significant factor, contrary to findings in larger, denser urban areas. Wind direction proves more effective in capturing concentration fluctuations than wind speed, and its interaction with pollution source orientation can change pollution dynamics. This study introduces new insights and methodologies for incorporating wind-related factors into the analysis of air pollution dynamics, offering opportunities for further investigation in various urban settings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call