Abstract

This paper introduces a new windowed Green function (WGF) method for the numerical integral-equation solution of problems of electromagnetic scattering by obstacles in the presence of dielectric or conducting half-planes. The WGF method, which is based on the use of smooth windowing functions and integral kernels that can be expressed directly in terms of the free-space Green function, does not require evaluation of expensive Sommerfeld integrals. The proposed approach is fast, accurate, flexible, and easy to implement. In particular, straightforward modifications of existing (accelerated or unaccelerated) integral-equation solvers suffice to incorporate the WGF capability. The method relies on a certain integral equation posed on the union of the boundary of the obstacle and a small flat section of the interface between the penetrable media. Our analysis and numerical experiments demonstrate that both the near- and far-field errors resulting from the proposed approach decrease faster than any negative power of the window size. In the examples considered in this paper the proposed method is up to thousands of times faster, for a given accuracy, than a corresponding method based on use of Sommerfeld integrals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.