Abstract

This contribution presents a novel Windowed Green Function (WGF) method for the solution of problems of wave propagation, scattering and radiation for structures which include open (dielectric) waveguides, waveguide junctions, as well as launching and/or termination sites and other nonuniformities. Based on use of a "slow-rise" smooth-windowing technique in conjunction with free-space Green functions and associated integral representations, the proposed approach produces numerical solutions with errors that decrease faster than any negative power of the window size. The proposed methodology bypasses some of the most significant challenges associated with waveguide simulation. In particular the WGF approach handles spatially-infinite dielectric waveguide structures without recourse to absorbing boundary conditions, it facilitates proper treatment of complex geometries, and it seamlessly incorporates the open-waveguide character and associated radiation conditions inherent in the problem under consideration. The overall WGF approach is demonstrated in this paper by means of a variety of numerical results for two-dimensional open-waveguide termination, launching and junction problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.