Abstract

We focus on robot navigation in crowded environments. The challenge of predicting the motion of a crowd around a robot makes it hard to ensure human safety and comfort. Recent approaches often employ end-to-end techniques for robot control or deep architectures for high-fidelity human motion prediction. While these methods achieve important performance benchmarks in simulated domains, dataset limitations and high sample complexity tend to prevent them from transferring to real-world environments. Our key insight is that a low-dimensional representation that captures critical features of crowd-robot dynamics could be sufficient to enable a robot to wind through a crowd smoothly. To this end, we mathematically formalize the act of <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">passing</i> between two agents as a rotation, using a notion of topological invariance. Based on this formalism, we design a cost functional that favors robot trajectories contributing higher passing progress and penalizes switching between different sides of a human. We incorporate this functional into a model predictive controller that employs a simple constant-velocity model of human motion prediction. This results in robot motion that accomplishes statistically significantly higher clearances from the crowd compared to state-of-the-art baselines while maintaining competitive levels of efficiency, across extensive simulations and challenging real-world experiments on a self-balancing robot.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.