Abstract
With the aim of helping researchers to develop intelligent operation and maintenance strategies, in this manuscript, an extensive 3-years Supervisory Control and Data Acquisition database of five Fuhrländer FL2500 2.5 MW wind turbines is presented. The database contains 312 analogous variables recorded at 5-minute intervals, from 78 different sensors. The reported values for each sensor are minimum, maximum, mean, and standard deviation. The database also contains the alarm events, indicating the system and subsystem and a small description. Finally, a set of functions to download specific subsets of the whole database is freely available in Matlab, R, and Python. To demonstrate the usefulness of this database, an illustrative example is given. In this example, different gearbox variables are selected to estimate a target variable to detect whether or not the estimate differs from the actual value provided for the sensor. By using this normality modelling approach, it is possible to detect rotor malfunction when the estimate differs from the actual measured value.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.