Abstract

In this study, sea surface wind speed was retrieved using the Global Precipitation Measurement (GPM) dual-frequency precipitation radar (DPR) Ka-band data. In order to establish the Ka-band model at low incidence angles, the dependence of the DPR Ka-band normalized radar cross section (NRCS) on the wind speed, incidence angle, sea surface temperature (SST), significant wave height (SWH), and sea surface current speed (CSPD) was analyzed first. We confirmed that the normalized radar cross section depends on the wind speed, incidence angle, and SST. Second, an empirical model at low incidence angles was established. This model links the Ka-band NRCS to the incidence angle, wind speed, and SST. Additionally, the wind speed was retrieved by the model and was validated via the GPM Microwave Imager (GMI) wind product. The validation yielded a root mean square error (RMSE) of 1.45 m/s and the RMSE was better at a lower incidence angle and a higher SST. This model may expand the use of GPM DPR data in enriching the sea surface wind speed data set. It is also helpful for other Ka-band spaceborne radars at low incidence angles to measure wind speed in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call