Abstract

Calibrating optical sensors has become a priority to maintain data quality and ensure consistency among sensors from different agencies. Achieving and monitoring radiometric calibration often involves the identification of temporally stable targets on the Earth’s surface. Although some locations across North Africa have traditionally been used as primary targets for calibration purposes, it is crucial to explore alternative options to account for potential changes in these sites over time. This study conducted a global assessment of pixel-level temporal stability using Landsat 8 OLI data, with the primary goal of identifying regions suitable for global radiometric calibration efforts. This work followed a two-stage approach, including the testing and selection of an effective combination of statistical tests to differentiate between temporally stable and unstable pixels and the generation of a worldwide mosaic of temporally stable pixels through a per-pixel statistical analysis employing a combination of Spearman’s rho and Pettitt’s test for assessing long-term trends and detecting change points. Notably, comparing the temporal mean top-of-atmosphere (TOA) reflectance before and after applying the generated temporal filter to a site with documented unstable pixels revealed a substantial reduction in mean variation, up to 6%. In addition, slopes observed in the pre-filter mean TOA reflectance, ranging between −0.002 and −0.005, became zero or near-zero and statistically insignificant after the temporal filter was applied, demonstrating a reduction in total uncertainties by 3 to 4%. These findings evidence the potential of this work, placing it as a potential foundation in the continuous search to identify additional targets for global radiometric calibration efforts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.