Abstract

Simultaneous measurements of windspeed were made outside and inside a pine (Pinus thunbergii Parl.) coastal forest with different thinning intensities. Synchronously, optical stratification porosity (OSP), which is defined as vertical distribution of the proportion of sky hemisphere not obscured by tree elements inside a forest stand, was estimated using hemispherical silhouettes in each treatment area. Based on the observations, the frequency distribution of velocity, turbulence intensity, wind profile, and the corresponding relationships of these respective parameters with the vertical forest structure (OSP) were examined and compared among the treatment areas. A normal distribution of wind velocity was observed at the lower zone of the forest stand in all treatment areas. The turbulence intensity, the highest value of which was found near the canopy, changed greatly with height, wind velocity, and treatment, and decreased with windspeed and increased with the thinning intensity. It was found that the exponential relationship between windspeed and height could be used to describe the wind profiles within the canopy of the coastal forest. The results demonstrate that the attenuation coefficient of the wind profile corresponds to the grade of thinning intensities. The wind patterns in a coastal forest with different thinning intensities are related to the vertical forest structure, particularly, wind profiles within the canopy are closely correlated with the distribution of OSP. The results indicate that wind profiles can be estimated simply based on the measurement of OSP with a very high coefficient of determination. Reciprocally, the estimation of OSP can also be obtained from the measurement of wind profile.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.