Abstract

Thinning is a common forest management measure that can effectively maintain the ecological service function of protected forests. However, the effect of thinning on the soil carbon (C) pool remains uncertain. In particular, we lack an understanding of the complete link between thinning and microbial communities, microbial necromass C, and consequently, soil C pools in coastal zone protected forests. In this study, three thinning intensities, i.e., a control treatment (CT, i.e., no thinning), light thinning (LT) and heavy thinning (HT), were established in three types of forests (Quercus acutissima Carruth, Pinus thunbergii Parl and mixed Quercus acutissima Carruth and Pinus thunbergii Parl, i.e., QAC, PTP and QP, respectively). Two years after the completion of thinning, we investigated the changes in the soil organic carbon (SOC) fractions, soil microbial community and soil microbial necromass C in the surface layer (0–20 cm) and thoroughly evaluated the relationship between the potential change in SOC and the microbial community. Compared with CT, there was no change in the SOC content under LT and HT, but thinning conducted in QAC increased the proportion of mineral-associated organic C (MAOC) in SOC. Moreover, both LT and HT reduced the soil carbon lability (CL) in the QAC and QP forests. Different thinning intensities changed the soil microbial community structure, and most of the variation was explained by thinning and the soil physicochemical properties. The proportion of soil bacterial and fungal necromass C to SOC increased with increasing thinning intensity. The content of soil bacterial and fungal necromass C was mainly controlled by the relative abundance of the core phylum (relative abundance>10 %). Thinning affected the soil C pool by affecting the content of soil bacterial and fungal necromass C, but their accumulation pathways was different. The results showed that thinning was beneficial to the stability of SOC. The microbial C pool, total organic C pool and even bacterial and fungal C pools should be distinguished when studying the soil C pool, which can effectively deepen our understanding of the mechanism by which soil microorganisms affect the soil C pool.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call