Abstract

Regional meteorological models are becoming a generalized tool for wind resource forecasting, due to their capacity to simulate local flow dynamics impacting wind farm production. This study focuses on the case of production forecast and validation for a real onshore wind farm using high horizontal and vertical resolution WRF (Weather Research and Forecasting) model simulations. The wind farm is located in Galicia, in the northwest of Spain, in a complex region with high wind resource. Utilizing the Fitch scheme, specific for wind farms, a period of one year is simulated with a daily operational forecasting set-up. Power and wind predictions are obtained and compared with real data at each wind turbine hub, provided by the management company. Results show that WRF yields good wind power operational predictions for this kind of wind farms, due to a good representation of the planetary boundary layer behaviour of the region and the good performance of the Fitch scheme under these conditions. The best mean annual error (MAE) obtained is 1.87 m/s for wind speed and 14.75% for wind power. By comparing experiments with and without Fitch scheme, we estimate wind resource losses in the area due to the wake disturbances. The mean annual wake or environmental footprint of the farm extends for several kilometres in the southwest-northeast direction of the prevailing winds, with resource losses of 0.5% even at 17 km from the turbines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.