Abstract

Due to the rich and high quality of offshore wind resources, floating offshore wind turbine (FOWT) arouses the attentions of many researchers. But on a floating platform, the wave and wind induced loads can significantly affect power regulation and vibration of the structure. Therefore, reducing these loads becomes a challenging part of the design of the floating system. To better alleviate these fatigue loads, a control system making compensations to these disturbances is proposed. In this paper an individual pitch control (IPC) system integrated with disturbance accommodating control (DAC) and model prediction control (MPC) through fuzzy control is developed to alleviate the fatigue loads. DAC is mainly used to mitigate the effects of wind disturbance and MPC counteracts the effects of wave on the structure. The new individual pitch controller is tested on the NREL offshore 5 MW wind turbine mounted on a barge with a spread-mooring system, running in FAST, operating above-rated condition. Compared to the original baseline collective pitch control (CPC) (Jonkman et al., 2007), the IPC system shows a better performance in reducing fatigue loads and is robust to complex wind and wave disturbances as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.