Abstract

In this work a nonlinear model predictive controller with individual pitch control for a floating offshore wind turbine is presented. An aerodynamic model of the collective pitch control approach is extended by describing pitching and yawing moments based on rotor disk theory. This extension is implemented in a reduced nonlinear model of the floating wind turbine including disturbance preview of wind speed, linear vertical and horizontal wind shear, and wave height to compute optimal input trajectories for the individual pitch control inputs and the generator torque. An extended cost functional for individual pitch control is proposed based on the collective pitch control approach. The controller is evaluated in aero-servo-hydro-elastic simulations of a 5MW reference wind turbine disturbed by a three-dimensional stochastic turbulent wind field. Results show a significant blade fatigue load reduction compared to a baseline controller through minimizing yawing and pitching moments on the rotor hub while maintaining the advantages of the model predictive control approach with collective pitch control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.