Abstract

Diurnal variations in the propagation direction of atmospheric gravity waves, and the travelling ionospheric disturbances to which they give rise, have been observed in many experimental observations and several modelling studies have demonstrated that this is primarily due to the corresponding diurnal rotation in the direction of the thermospheric wind. Other variations have been attributed to seasonal or other effects, but the effects of variations in the thermospheric temperature have not previously been analysed in detail. We present results from a study of the propagation of gravity waves through a layered atmosphere in which the thermospheric wind and temperature are derived from a three-dimensional time-dependent model. The analysis has been carried out for a range of wave speeds and periods, and for a range of times, seasons and propagation azimuths. Results suggest that a significant diurnal variation in the transmission coefficient for waves propagating through the thermosphere exists with seasonally dependent maxima. Transmission increases for increasing wave period up to about 50 min, after which it remains approximately constant. Maximum transmission occurs for wave phase speeds around 200–250 m/s and falls to zero for speeds less than about 100 m/s. An exception to this rule occurs for waves with periods less than 40 min and speeds less than 50 m/s for which significant transmission appears to be theoretically possible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.