Abstract
Wind and fire phenomena can together be a devastating force, whether in the case of a building fire, release of smoke in an urban area or forest fire near an urban habitat. Most of the fire phenomena are influenced by the wind, usually for the worse. If we want to understand fires, we have to understand wind as well, and model it appropriately. This modelling is described by the discipline of Computational Wind Engineering, from which we are able to transfer invaluable knowledge to coupled wind-fire analyses. This two-part review is dedicated to such a transfer. In Part I, the authors describe the historical and most current instances of wind and fire coupled modelling, referred to as simple models, in situ measurements, wind tunnel experiments or numerical studies with CFD. The review is subdivided into six categories, namely flame behaviour in wind conditions, indoor flows, natural smoke ventilators, tunnel ventilation, wildfires and firebrand transport, and urban dispersion of smoke. Besides flame behaviour, all remaining topics are covered, to the best of the authors’ knowledge, with multiple references to valuable experimental and numerical studies. In Part II of the review, the authors describe the best practices of Computational Wind Engineering, that may be transferred to fire-oriented numerical studies. This part provides good practice guidelines, reference studies and a proposal for the optimisation of the simulation procedure for coupled wind and fire models.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have