Abstract
Mounting evidence indicates the involvement of N6-methyladenosine (m6A) alterations in diverse neurological disorders and the activation of microglia. However, the role of m6A methyltransferase Wilms' tumor 1-associated protein (WTAP) in regulating microglial polarization during ischemic stroke (IS) remains unknown. We performed bioinformatics analysis to identify m6A-related differentially expressed genes in IS and validated these genes in a mouse middle cerebral artery occlusion model and a BV2 cell oxygen-glucose deprivation/reperfusion model. We found that microglial m6A modification was increased, and that WTAP was the most significantly differentially expressed m6A regulator during IS. High expression of WTAP is closely correlated with microglia-mediated neuroinflammation in IS. Mechanistically, WTAP promoted m6A modification, which promoted prostaglandin endoperoxide synthase-2 (PTGS2) by enhancing its mRNA stability. WTAP promoted M1 microglial polarization by elevating PTGS2 expression via m6A modification of PTGS2 mRNA in the oxygen-glucose deprivation/reperfusion model. In conclusion, WTAP is a crucial posttranscriptional regulator that contributes to post-IS neuroinflammation. WTAP knockdown confers cerebral protection by shifting the microglial phenotype from M1 to M2, primarily by reducing PTGS2 mRNA stability in an m6A-dependent manner.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.