Abstract

Abstract: Efficient and reliable monitoring of wild animals in their natural habitats is essential to inform conservation and management decisions. Automatic covert cameras or “camera traps” are being an increasingly popular tool for wildlife monitoring due to their effectiveness and reliability in collecting data of wildlife unobtrusively, continuously and in large volume. However, processing such a large volume of images and videos captured from camera traps manually is extremely expensive, time-consuming and also monotonous. This presents a major obstacle to scientists and ecologists to monitor wildlife in an open environment. Leveraging on recent advances in deep learning techniques in computer vision, we propose in this paper a framework to build automated animal recognition in the wild, aiming at an automated wildlife monitoring system. In particular, we use a single-labeled dataset from Wildlife Spotter project, done by citizen scientists, and the state-of-the-art deep convolutional neural network architectures, to train a computational system capable of filtering animal images and identifying species automatically. Our experimental results achieved an accuracy at 96.6% for the task of detecting images containing animal, and 90.4% for identifying the three most common species among the set of images of wild animals taken in Southcentral Victoria, Australia, demonstrating the feasibility of building fully automated wildlife observation. This, in turn, can therefore speed up research findings, construct more efficient citizen science based monitoring systems and subsequent management decisions, having the potential to make significant impacts to the world of ecology and trap camera images analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.