Abstract

The Wigner-Smith (WS) time delay matrix relates a lossless system's scattering matrix to its frequency derivative. First proposed in the realm of quantum mechanics to characterize time delays experienced by particles during a collision, this article extends the use of WS time delay techniques to acoustic scattering problems governed by the Helmholtz equation. Expression for the entries of the WS time delay matrix involving renormalized volume integrals of energy densities are derived, and shown to hold true, independent of the scatterer's geometry, boundary condition (sound-soft or sound-hard), and excitation. Numerical examples show that the eigenmodes of the WS time delay matrix describe distinct scattering phenomena characterized by well-defined time delays.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.